首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83979篇
  免费   8627篇
  国内免费   3721篇
电工技术   3672篇
技术理论   12篇
综合类   7665篇
化学工业   22012篇
金属工艺   4350篇
机械仪表   2470篇
建筑科学   10082篇
矿业工程   3700篇
能源动力   3862篇
轻工业   5259篇
水利工程   2468篇
石油天然气   4262篇
武器工业   333篇
无线电   3977篇
一般工业技术   11868篇
冶金工业   5375篇
原子能技术   739篇
自动化技术   4221篇
  2024年   196篇
  2023年   1506篇
  2022年   2188篇
  2021年   2713篇
  2020年   2659篇
  2019年   2477篇
  2018年   2258篇
  2017年   2606篇
  2016年   2919篇
  2015年   2910篇
  2014年   4720篇
  2013年   4628篇
  2012年   5802篇
  2011年   6241篇
  2010年   4742篇
  2009年   5088篇
  2008年   4256篇
  2007年   5550篇
  2006年   5238篇
  2005年   4537篇
  2004年   3844篇
  2003年   3548篇
  2002年   2918篇
  2001年   2279篇
  2000年   1912篇
  1999年   1533篇
  1998年   1177篇
  1997年   945篇
  1996年   825篇
  1995年   745篇
  1994年   606篇
  1993年   485篇
  1992年   389篇
  1991年   279篇
  1990年   282篇
  1989年   219篇
  1988年   170篇
  1987年   158篇
  1986年   97篇
  1985年   123篇
  1984年   108篇
  1983年   75篇
  1982年   52篇
  1981年   41篇
  1980年   43篇
  1979年   35篇
  1977年   22篇
  1976年   22篇
  1975年   22篇
  1951年   25篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
在大类培养改革背景下,基于“电工学实验”开放式实践教学体系现状进行了“电工学实验”混合教学模式的研究,建立了“微课”资源并通过新型教学平台进行推送,确立了完备的混合教学模式应用机制并在部分专业进行了试点,通过分析试点调查数据得出混合教学模式具有在实验教学中提高学生学习效率、激发学生学习动力、促进学生个性发展、培养学生实践应用能力的优势,是落实创新应用型人才培养目标的重要举措。  相似文献   
2.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
3.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   
4.
甫沙4井位于塔里木盆地塔西南坳陷昆仑山前冲断带的柯东构造带上,北部和东部分别发育有柯克亚和柯东1井油气田。为研究甫沙4井原油来源与充注过程,对原油样品和连续抽提后的含油砂样各组分(游离态、束缚态、包裹体)进行GC、GC?MS和 GC?IRMS分析,与柯克亚凝析油气田油样进行油—油对比。结果表明:甫沙4井晚期充注原油组分具有C29?32重排藿烷、重排甾烷和Ts相对含量高,C27?29甾烷ααα 20R分布呈反“L”型,以及正构烷烃单体碳同位素值较低等特征,与柯克亚凝析油气田来源于二叠系普司格组(P2?3p)烃源岩的主体原油(I类)地球化学特征一致。而早期充注的原油组分具有重排藿烷、重排甾烷和Ts相对含量较低,C27?29甾烷ααα 20R分布呈“V”型,以及正构烷烃单体碳同位素值较高等特征,与柯克亚凝析油气田来源于中—下侏罗统湖相泥岩的II类原油地球化学特征一致。甫沙4井经历3个阶段成藏过程:①在上新世,二叠系烃源岩于生油晚期阶段生成的I类原油运移至柯克亚构造带或柯东构造带深部形成油藏;②在更新世早期,侏罗系烃源岩于生油早—中期生成的II类原油运移至甫沙4井白垩系储层;③在第四纪,强烈的构造作用使深部I类原油沿断裂调整进入甫沙4井白垩系储层。最终造成甫沙4井白垩系储层II类原油先充注,I类原油后充注的特殊现象。  相似文献   
5.
The probabilistic learning on manifolds (PLoM) introduced in 2016 has solved difficult supervised problems for the “small data” limit where the number N of points in the training set is small. Many extensions have since been proposed, making it possible to deal with increasingly complex cases. However, the performance limit has been observed and explained for applications for which N is very small and for which the dimension of the diffusion-map basis is close to N. For these cases, we propose a novel extension based on the introduction of a partition in independent random vectors. We take advantage of this development to present improvements of the PLoM such as a simplified algorithm for constructing the diffusion-map basis and a new mathematical result for quantifying the concentration of the probability measure in terms of a probability upper bound. The analysis of the efficiency of this extension is presented through two applications.  相似文献   
6.
《Ceramics International》2022,48(15):21961-21971
The Simplistic formation, advantageous configuration, non-colossal magnetoresistance and broadband absorption are important parameters for microwave absorbent materials. In this study, a core-shell nanocomposite comprising of Sn-filled carbon nanotubes (Sn/CNTs) was prepared by arc discharge method. The microstructure, morphology and surface composition of Sn/CNTs-based core-shell nanocomposites were characterized in detail. Sn/CNTs nanocomposite showed a magnetic signal due to the broken bonds and defects at interfaces in Sn/CNTs. The weak ferromagnetism was found to be helpful in improving magnetic permeability in the Sn/CNTs which confirms its role as a magnetic loss material under incident electromagnetic wave. Sn-filled CNTs revealed an appropriate value of dielectric constant, which plays an important role in impedance matching upon incident electromagnetic wave. The composite of Sn-CNTs and paraffin with a 50 wt % loading showed the lowest reflection loss (RL) of ?43.87 dB at 10 GHz, with a wide effective absorption band (RL ≤ ?10 dB) of 3 GHz in thickness of 2.3 mm. This enhanced performance is attributed to the combined effect of the conduction loss in one-dimensional core-shell architecture, the interfacial loss Sn-CNT interface, the magnetic loss due to defects-induced ferromagnetism in Sn shell, and in the carbon-containing atomic layers of CNTs.  相似文献   
7.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
8.
The carbon vacancy in high-entropy carbides (HECs) has a significant impact on their physical and chemical properties, yet relevant studies have still been relatively few. In this study, we investigate the surface energies of HECs with variable carbon vacancies through first-principles calculations. The results show that the surface energy of the (1 0 0) surface of the stoichiometric HECs is significantly lower than that of (1 1 1) surface. With the decrease in carbon stoichiometry, the surface energies of both (1 0 0) and (1 1 1) surfaces increase gradually, which is mainly due to the weakening of covalent bonding and the decrease of metal Hirshfeld-I (HI) charges. However, the surface energy of (1 0 0) surface increases more quickly than that of (1 1 1) surface and will exceed that of (1 1 1) surface when the carbon stoichiometry decreases to a certain extent, which is primarily attributed to the greater decrease rate of metal HI charges of (1 0 0) surface.  相似文献   
9.
Reasonable construction of heterostructure is of significance yet a great challenge towards efficient pH-universal catalysts for hydrogen evolution reaction (HER). Herein, a facial strategy coupling gas-phase nitridation with simultaneous heterogenization has been developed to synthesize heterostructure of one-dimensional (1D) Mo3N2 nanorod decorated with ultrathin nitrogen-doped carbon layer (Mo3N2@NC NR). Thereinto, the collaborative interface of Mo3N2 and NC is conducive to accomplish rapid electron transfer for reaction kinetics and weaken the Mo–Hads bond for boosting the intrinsic activity of catalysts. As expected, Mo3N2@NC NR delivers an excellent catalytic activity for HER with low overpotentials of 85, 129, and 162 mV to achieve a current density of 10 mA cm?2 in alkaline, acidic, and neutral electrolytes, respectively, and favorable long-term stability over a broad pH range. As for practical application in electrocatalytic water splitting (EWS) under alkaline, Mo3N2@NC NR || NiFe-LDH-based EWS also exhibits a low cell voltage of 1.55 V and favorable durability at a current density of 10 mA cm?2, even surpassing the Pt/C || RuO2-based EWS (1.60 V). Consequently, the proposed suitable methodology here may accelerate the development of Mo-based electrocatalysts in pH-universal non-noble metal materials for energy conversion.  相似文献   
10.
Carbon-based materials have been often employed as electrocatalytic substrates because of their large surface area/highly porous structure. Similar to carbon substrates, the non-carbon related materials such as transition metals also play an important role in improving catalytic performance. However, the simultaneous synthesis and metallic functionalization of carbon substrates is a highly challenging issue. Herein, a hydrothermal method has been used for the preparation of Ni-functionalized porous carbon balls. The significant role of Ni2+ ions in the synthesis of porous carbon balls has been confirmed. The results of transmission electron microscopy indicate that, the as-prepared porous carbon balls were suitable for the dispersion of Pt nanoparticles with small particle size (less than 4 nm). In addition to providing the OHads species, the Ni can also modify the surface electronic structure of Pt. Electrochemical measurements results reveal that, under the strong interactions between Ni and Pt, the as-prepared porous carbon balls supported Pt nanoparticles (Pt/Ni-CB) catalyst possesses excellent electrocatalytic activity, stability and CO anti-poisoning capability towards methanol electrooxidation reaction (MOR). This work opens a novel idea for the construction of the metal functionalization of carbon substrates and their subsequent applications in other electrocatalytic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号